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Truncated Navier-Stokes Equations: Continuous 
Transition from a Five-Mode to a Seven-Mode Model 
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A two-parameter family of nonlinear differential equations ~ = F(x, R, e) is 
studied, which allows one to connect continuously, as e varies from zero to one, 
the different phenomenologies exhibited by a model of 5-mode truncated 
Navier-Stokes equations and by a 7-mode one extending it. A critical value is 
found for c, at which the most significant phenomena of the 5-mode system 
either vanish or go to infinity. New phenomena arise then, leading to the 7-mode 
model. 

KEY WORDS: Navier-Stokes equations; truncations of the Navier- 
Stokes equations; stationary bifurcation; Hopf bifurcation; period-doubling 
bifurcation; bifurcation of a periodic orbit into a two-toms; turbulence; 
strange attractors. 

1. I N T R O D U C T I O N  

In  o rde r  to give a ma thema t i ca l  in te rpre ta t ion  to the p h e n o m e n o n  of 
tu rbulence  in fluids, m a n y  numer ica l  invest igat ions  were pe r fo rmed  on 
models  of s imple non l inear  equat ions  which, a l though determinis t ic ,  dis- 
p l ay  a chaot ic  behav io r  as one or  more  pa rame te r s  increase  b e y o n d  cer ta in  
cri t ical  values.  W e  refer to Ref. 1 for  a wide review of studies in this line, 
while Ref.  2 provides  the theoret ica l  f r amework  to unde r s t a nd  the di f ferent  
p h e n o m e n a  tha t  occur  in such models .  

Di rec t ly  connec ted  with the s tudy of f luid mo t ion  are  the mode l s  
ob t a ined  by  t runca t ing  to a finite n u m b e r  of modes  the Four i e r  series 
expans ion  of the b id imens iona l  N a v i e r - S t o k e s  equat ions  for an  incom-  
pressible  f luid on a torus. In  such a way  one ob ta ins  a one -pa r a me te r  
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family of ordinary differential equations, where the parameter  is propor- 
tional to the Reynolds number. (3) 

Recently two interesting models of this kind were carefully studied, 
one obtained by a five-mode truncation (4'5~ and the other one by a 
seven-mode extending it. (6~ The two models exhibit quite different features 
concerning the onset of turbulence and the postturbulence behavior, A 
natural question arises then, which is relevant about any kind of highly 
truncated models of systems actually having infinitely many  degrees of 
freedom; the question is how truncation affects the phenomenology exhib- 
ited by the system. In this work we consider a model which allows one to 
connect continuously, by means of a parameter  E, the two phenomenolo- 
g i e 8 .  

Most of our investigations are numerical, and they were performed on 
a CDC 7600. Numerical integration, throughout this paper, means integra- 
tion by a Runge-Kut t a  method of fourth order. We consider periodic 
solutions as fixed points of the associated Poincar6 map; in this way one 
can fit well-known numerical  methods for searching fixed points. We used 
Newton's  method, because it is not affected by the attracting or repulsive 
nature of the orbit. One can thus "follow" periodic orbits continuously as 
the parameters change, via an iterative procedure; this is possible because, 
as it is reasonable to think, small perturbations of the parameters cause 
small perturbations on the coordinates of a fixed point, provided that it still 
exists. 

A summary of the phenomenologies exhibited by the two models in 
question can be found in Section 2, together with some remarks about their 
analogies and differences. Section 3 introduces the connecting model, and 
the crucial values of e, q,  and e3. Sections 4, 5, and 6 are devoted to the 
detailed study of different phenomena, while Section 7 describes a model of 
the same kind exhibiting no chaotic behavior. 

2. THE FIVE-MODE AND THE SEVEN-MODE MODELS 

Since in this work we study the connections between the two models 
studied in Refs. 4-6, it seems useful to report here a concise summary of 
the known results about them, referring to these references for details, and 
introducing some new notations to better connect the two phenomenolo- 
gies. The two pictures in Fig. 1 can help provide better comprehension. 

Truncating the Fourier series ex- Truncating the Fourier series ex- 
pansion on the set L s = {k I = (1, 1),k 2 pansion on the set L 7 = L 5 U { k  6 = 

= (3,0),k 3 = (2 , -1 ) ,k  4 = (1,2),k 5 = (1,0),k7=(1,2)) and taking a force 
(0, 1)} and taking a force acting on the acting on the mode k3 the bidimen- 
mode k3, the bidimensional Navier- sional Navier-Stokes equations be- 
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Fig. 1. Graphical  summary  (not in scale) of the phenomenologies  exhibited by system (2.1) 
(Fig. 1A) and system (2.2) (Fig. 1B), as R varies. A sequence of o o *  indicates for that range of 
R a stable fixed point, a sequence of o o o an  unstable fixed point; a cont inuous line a 
stable periodic orbit, a broken line - - -  an unstable periodic orbit; a black tube i an 
attracting torus T2; a set of �9 �9 , turbulent  regime. Symmetrical points, orbits, tori undergo- 
ing identical behavior  due to the symmetries  of the systems are identified. 
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Stokes equations become come 

21 = - 2 x l  + 4 ~ / 5 x 2 x  3 + 4 ~ / 5 x 4 x  5 x1 = - 

2 2 = - - 9 x  2 + 3 ~ ' x l x  3 x 2  = - -  

23 = - 5x 3 - 7~/-5XlX 2 + R (2.1) 23 = - 

2 4  = - -  5 X  4 --  ~ / 5 X I X  5 "~4 = - -  

2 5 = - -  X 5 --  3~ / ' 5XlX4  375 = - -  

2 6 = - -  

377 = - -  

(a) For 0 < R < R 1 = ~ there 
is only one stationary solution, P0, 
which is stable and globally attractive. 

(b) For  R 1 < R  < R~ ----- 4.8686 
there are two other stable attracting 
fixed points Po, bifurcated from P0 at 
R = R1, as it has become unstable. (o 
is the sign of the coordinates Xl, x2). 

(c) For  R ~ < R <  R ~ 1 0 . 2 2 0 6  
there are four more stable attracting 
fixed points P~  (~ is the sign of coor- 
dinate xs); Po+ and Po_ bifurcate 
from Po at R = R~ as Po becomes un- 
stable. 

(d) At R = R~ four stable sym- 
metric periodic orbits HoT arise .via a 
direct Hopf bifurcation from Po~, each 
around one PoT, now unstable. 

(e) For  R ~ < R <  R ; ~ - 1 2 . 8 2 1  
four identical sequences Ho', of peri- 
odic orbits take place in connection 
with an infinite sequence of bifurca- 
tions. At the ith bifurcation, which 
occurs at R = Pi, each orbit H/~ -1 be- 
comes unstable because a real eigen- 

2x I + 4 ~ / 5 x 2 x  3 + 4 ~ / S x 4 x  5 

9x 2 + 3~/SXlX 3 

5x3 - 7 , [ 5 x l x 2  + 9 x l x 7  + R 

5 x  4 - ~/5 x l x  5 (2.2) 

X 5 - -  3 ~ / 5 X l X  4 + 5 X l X  6 

X 6 - -  5 X I X  5 

5x7 - 9 x l x 3  

(a) For 0 < R < R ] =  7~.5 there 
is only one stationary solution, P0, 
which is stable and globally attractive. 

(f i)  For R~ < R < R~' ~ 30.2124 
there are two other stable attracting 
fixed points, Po, bifurcated from P0 at 
R = R], as it has become unstable. (o 
is the sign of the coordinates Xl,X2,  

X7,)  

(7) For R > R~' the three fixed 
points of (2.2) are all unstable. 

(8) At R = R~' two stable sym- 
metric periodic orbits 190 arise via a 
direct Hopf bifurcation from Po, each 
around one P~. The two 0~, which 
owing to the symmetries of the model 
undergo identical behavior as R in- 
creases, become unstable at R = R~' 
= 71.30 because a pair of complex 
conjugate eigenvalues of the Liapunov 
matrix of their Poincar6 map crosses 
the unit circle. 

(E) For  R4' < R < R ; ' ~ 7 2 . 1 1  
two attracting 2-tori T(O,), bifurcated 
one from each Oo, are present. For 
R > R~' they do not attract any more, 
and they do not seem to bifurcate into 
any other attractor, since every point 
randomly chosen in a neighborhood of 
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value of its Poincar6 map crosses the 
unit circle through - 1 ,  bifurcating 
into the stable periodic orbit Ho',, 
which has doubled period. The se- 
quence (Pi) of the bifurcation values, 
is found to be compatible with Fei- 
genbaum's conjecture, n:amely, 

Pi  - -  P i -  I 
l i m  - -  - 8 ~ 4 . 6 6 9 2  

i - - - ~  P i +  1 - -  Pi 

Thus, a value can be estimated, p~ 
12.821, at which the sequence of 

bifurcations accumulates. 

(f) At R = R,] ~ 12.8185 four 
more symmetric orbits arise, which are 
stable and attracting, Ao~ they have 
spatial structure different from H~; in 
fact each A~ winds up around two 
fixed points, namely, P+~ and P_~; 
the sign ~- indicates that two of them 
are contained in the half-space x 5 < 0 
and the other two in x 5 > 0 .  As R 
decreases to R,~ a real eigenvalue of 
the Liapunov matrix of the Poincar6 
map tends to join the unit circle at 
+ 1, and each Ao ~ coalesces with an 
unstable orbit Ao** which is present at 
the same time. As R increases, R~ can 
thus be regarded as a "birth" value of 
A~ 

(g) For R~ < R < R~ ~ 12.8440 a 
second sequence of infinite bifurca- 
tions gives rise to four identical se- 
quences of periodic orbits (A/r} with 
the same characteristics of the se- 
quences (H/~). Also the sequence (/~i) 
of the bifurcation points for Ao"~ is 
found to be compatible with Feigen- 
baum's conjecture, and /too = 12.8440 
is estimated to be the value of R for 
which the bifurcations accumulate. 

(h) For R~<  R < R - ~  13.50t2 
two symmetric strange attractors are 
present, one located in the half-space 
x 5 < 0, and the other in x 5 > 0. 

0o is attracted by other stable periodic 
orbits present at the same time. 

(~) For 6 3 . 3 0 ~ R ~ ' < R < R ; ' 0  
192.75 two symmetric orbits F~ are 

present, which are stable and attract- 
ing. As R decreases beyond R~' a pair 
of complex conjugate eigenvalues 
crosses the unit circle, so that F~ al- 
ready exists, unstable, for R < R~'. Its 
origin has not been detected. The sign 
z indicates that each F~ is contained 
either in the half-space x s < 0 or in 
x s > 0 .  

(T/) For R{~)< R < R('I ~227-1 
two attracting 2-tori T(F~) arise, each 
from one F~, as F~ become unstable at 
R = R{; because a pair of complex 
conjugate eigenvalues crosses the unit 
circle. For R > R;'I the tori T(F,) do 
not attract any more, and they do not 
seem to bifurcate into any other at- 
tractor. 

(O) For 1 4 1 . 7 ~ R ; ' <  R <  R{'2 
248.2 two other symmetric periodic 

orbits are present, X1 and X2, which 
are stable and attracting. As R de- 
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(i) For  R 4 < R < R ~ - - ~ 1 3 . 6 5  a 
third sequence of infinite bifurcations 
gives rise to four more identical se- 
quences of periodic orbits (C/,}, with 
spatial features and origin similar to 
those of (A/T}. The sequence (Vi} of 
the bifurcation points of (C/T } has the 
same characteristics as the sequences 
(Pi) and {/L~). 

(j) For R~ < R < R~ ~ 14.95 the 
two symmetric strange attractors that 
disappeared at R = R4 because of the 
birth of stable orbits coT, are again 
present. 

(k) For  R > R~ any trajectory 
rapidly becomes periodic, because of 
two new stable periodic orbits F T. (~- 
indicates that one of them is contained 
in the half-space x 5 < 0 and the other 
in x 5 > 0.) 

creases beyond Ri' a pair of complex 
conjugate eigenvalues of their Poin- 
car6 map crosses the unit circle, so 
that they already exist, unstable, for 
R < R~', but their origin has not been 
detected. As R increases to R,'~ a real 
eigenvalue tends to join the unit circle 
at + 1, and each X coalesces with an 
unstable orbit X* which is present at 
the same time. As R increases, R{'2 can 
thus be regarded as a "death" value 
for X. 

(0 For  146 .61~R~ '  < R < R ~ '  
= 166.59 two symmetric orbits are 
present, tpl and +2, which are stable 
and attracting. As R decreases beyond 
R~' or increases beyond R~', a real 
eigenvalue of the Poincar~ map for 
actually crosses the unit circle through 
+1.  Following ~ for values of R 
< R~', a "birth" value R~' ~ 142.97 
was found at which unstable ~, arises 
with a twice-unstable +*; (we will see 
in more detail an analogous case in 
Section 5). No "death" value for ~ has 
been determined, as R increases. 

(~) For R > R{~ no simple at- 
tractor is present at such large values 
of R. Up to the values investigated 
(R = 5000), any randomly chosen ini- 
tial data yield a completely chaotic 
trajectory, sensitively dependent on 
initial conditions. 

Remarks. Looking  at  Fig. 1 one can easily check that  bo th  system 
(2.1) and  system (2.2) d i sp lay  cases of hysteresis,  i.e., s imul taneous  occur-  
rence of dis t inct  a t t ractors ,  not  jus t i f iable  by  the symmetr ies  of the systems. 

The  onset  of turbulence  is different  in the two systems. In  fact  in 
system (2.1) it  is connec ted  with infini te sequences of b i furca t ions  of 
per iod ic  orbi ts  into per iod ic  orbits.  Two s t range a t t rac tors  are present ,  
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symmetrically placed with respect to the hyperplane x 5 = 0. In system (2.2), 
instead, turbulence is reached through finite sequences of bifurcations of 
attractors into attractors of higher dimension, leading to a unique strange 
attractor at high values of R. The finiteness of these sequences is pointed 
out in Ref. 6 by affirming that for values of R slightly greater than Rl" 1, 
R~' respectively, any randomly chosen initial data in a neighborhood of 
the unstable 2-tori T(I'r), T(O~) is attracted by periodic orbits elsewhere 
displaced in the phase space. 

No sequence of period-doubling bifurcations seems present in system 
(2.2). 

At high values of R system (2.1) displays periodic behavior (the orbit 
F), while system (2.2) exhibits chaos at every value of R > Rl' ~ investigated. 

3. THE CONNECTING MODEL AND STUDY OF STATIONARY 
SOLUTIONS 

We tried to face the problem of the strong qualitative difference in the 
asymptotic behavior of the two models described in Section 2, from a 
perturbative point of view. Let us consider the two-parameter family of 
ordinary differential equations: 

21 = - - 2 X  1 -t- 4~/-5X2X 3 + 4~/5X4X 5 

2 2 = - 9 x  2 + 3 v ~ x l x  3 

23 = - - 5 X  3 --  7 ~ - X l X  2 + 9EXlX 7 + R 

9C4 = -- 5X4 -- ~fNXlX5 ( 3 . 1 )  

25 = --  X 5 --  31/-5XlX 4 -4- 5r 6 

2 6 =  - - X  6 -  5~XlX 5 

27 = -- 5X 7 --  9eXlX 3 

For e = 1 the model is the same as (2.2), studied in (6), while for e = 0 the 
phase space is the direct sum of two spaces, NsO N 2, on which a solution 
x(t) has coordinates xi(t  ) given by the solution of system (2.1) for i 
= 1 . . . . .  5 and x6(t ) = X 6 ( 0  ) " e -t, x 7 ( t  ) = X7(0 ) " e -St. 

The problem is now to find values of (R, c) critical for the asymptotic 
behavior of solutions of this system. 

We first observe that system (3.1) is invariant under the symmetries 

( x , ,  x 2 ,  x 3 ,  x 4 ,  x 6 ,  x 2 ,  - x 4 ,  - x s ,  - xT) 

( ~ )  ( X l ' X 2 ' X  3 , x  4 , x  5 , x  6 ,x7)~-- - -~  ( - x l ,  - - X 2 , X  3, - - X 4 , X  5, - - X 6 ,  - - X 7 )  

( v )  x , ,  - x ,x ,x4, - x ,x6, - x T )  

which form a group together with the identity transformation. 
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System (3.1) has the following stationary properties: 
For 0 < R < R 1 = (7.5) 1/2 and Ve, the system admits only one station- 

ary solution P0, with coordinates %.=0  for i =  1 , 2 , 4 , . . . ,  7 and x 3 
= R/5; P0, is stable and, by numerical evidence, globally attractive; at 
R = R 1 a real eigenvalue of the Liapunov matrix at P0 crosses the imagi- 
nary axis, and two stable stationary solutions arise, P+ and P_ ,  bifurcated 
from P0, with coordinates 

X 1 ---~ ~ / 6 X 2  

x2 --- o5 2 ( 3 0 ~ 7 ~ i ~ + ~ 3 d )  

x 3 = (3/10) 1/2 

X 4 ~ X 5 ~ X 6 = 0 

27e 
X 7 ~--- _ X 2  

where o = +_;P+ and P_ are symmetrical and go through identical behav- 
ior, so that they will be referred to as P~ in the following. 

If we consider the Liapunov matrix Lo(R,e) at P,(R,e), we have that 

4 0 0 -  1632e 2 
(1) R = R~(e) = 5(30),/2(3 _ 25e2) 

is the condition on (R, e) to have a real eigenvalue of the matrix vanish, and 
so (Rs(e),e) is a value critical for Po, possibly a value for a stationary 
bifurcation; and 

36(175 + 243c 2) 
(2) R = Rh(~) = R~ + 

25(30) 1/2(9 - 5e 2) 

is the condition to have two purely imaginary eigenvalues, so that (R h (e), ~) 
is a value critical for Po, possibly a value for a Hopf bifurcation. 

Both Rs(C ) and Rh(~ ) are increasing functions, with R~(0) < Rh(0 ), and 

R~(~)---) oo as e~'% = ~ - / 5 ,  while Rh(E ) is finite for every c ~[0,1]. We 
determined the value e I ~ 0.26832 for which Rs(~l) = R h ( C l ) .  We have thus 
a partition of the interval [0, 1] in three intervals [0,q], (q,%), and [%, 1], 
characterized by a different behavior of the stationary solutions Po as R 
varies: 

(i) 0 < e < E ~  
We have Rs(E) < Rh(s SO that fixed ~, the P~'s lose stability at R = R~(E) 
bifurcating into four stable stationary solutions PoT (two from each Po), 
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with components  

1 
Xl~--- - - O  

Ea(~)] 1/2 

b(,) 

x 3 = 1 5 R - -  

1/2 

X 6 = 5 ~ - ~ X '  4 

x 7 = o27eR 

where o, 'r = _+ 1 and a ( e ) =  3-25e  2, and b ( c ) =  400-1632E 2. We will refer 
to these solutions as Po~ in the following. 2 

(ii) e t < ~ < E 3 

We have R h ( e ) <  R~(e)< + m ;  fixing e, as R increases, the Po's lose 
stability at R = Rh(r ) generating two symmetric  stable periodic orbits | 
via a direct Hopf  bifurcation;  as R increases further, the now unstable P~'s 
bifurcate into four unstable stationary solutions Po,, at R = Rs(e ). 

(iii) s < E < l 

Fixing e, Po lose their stability at R = Rh(e ) undergoing a H o p f  bifurcat ion.  
No  more  s ta t ionary bi furcat ion takes place. 

Studying numerical ly  the behavior  of the eigenvalues 2tz, with i 
= 1, . . . ,  7 for Lo(R, e), we found that what  actually happens is that five of 

them in any case have a negative real part .  The other  two, say X~ and M, are 
complex conjugate numbers,  placed in the left half-plane for small R and 
Ve. Fixing e and regarding ~,2 as complex functions of R, we see that 
]Im[hl,2(R)ll is a decreasing funct ion and Re[Xl,2(R)] an increasing one, up 
to a value of R at which Im(hl,2) vanishes and h I and  X 2 join on the real 
axis. F r o m  this value on, h ~,2(R) are real mono tone  functions, one increas- 
ing, the other  one decreasing. Such behavior  is more unders tandable  by 
Fig. 2. All of the bifurcations of  P~ are due to one or both  of hl,2(R), 

2 The condition on (R,e) to have two purely imaginary eigenvalues for the matrix Lo(R,e ) 
coincides with the condition for which it has two real eigenvalues symmetric with respect to 
zero. This is actually the case in this range of e, so that fixing E ~ [0, el) no Hopf bifurcation 
takes place for the Po's. 
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Im ~,1,~ {R) 

) )  Re 

[ ]  E=~;z 

Im ~1,2(R) 

) )  R. 

[ ]  

(( 
J 

Im X1,2(~) 

~" ) R e  

Jl,:l R) 

)Re 

Fig. 2. The  behavior  of )kl,2(R , c), at  fixed e, pic tured as linear. The  brackets  on the real axis 
indicate  tha t  the range  {?~I,2(R)/R /> Rs(e)} is finite, and  tha t  for c > e 3 (Fig. 2D) it does  not  
conta in  zero. 

crossing the imaginary axis at different points on their way, depending on 
the interval in which e is chosen. 

At the critical points q and e 3 the situation is 
(iv) e = q  

hl,2(R) become real and coincident in zero, for R = Rs(e ) = Rh(e ) (Fig. 2B). 
We verified numerically that the Po's undergo a stationary bifurcation also 
in this limit case, because they originate the stable Po/s. 

( v )  ~ - -  ~3 

There is no value of R at which Po,(R, e) exist; moreover there is numerical 
evidence that the range {)kl,2(R, e3)//R > Rh(e3) } has its lower bound in 
zero, in the sense that X 2 ( R ) ~ 0  as R ~  oo. For this reason no stationary 
bifurcation for P~ takes place. 

In conclusion, by explicit computation of the matrix Lo(R,e) at the 
point Po, we can argue that the whole interesting phenomenology con- 
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nected with the four fixed points Pot, studied in Refs. 4 and 5 for e = 0, is a 
priori possible only for e E [0,e3), i.e., for values of e for which Rs(e ) is 
finite, and Pa~(R, e) exist. On the other hand, the phenomenology observed 
for �9 = 1 in Ref. 6, with points bifurcating into orbits, with orbits bifurcat- 
ing into tori, is a priori possible only for e E (q, 1], i.e., for values of e for 
which Po(R, ~) undergoes a Hopf bifurcation as R increases. For e ~ (q, e3), 
while we have observed numerically a phenomenology of bifurcations of 
periodic orbits generated both by Po and by Pot, no chaotic behavior has 
been observed. We will discuss this intermediate situation in Section 7. 

The different bifurcations that take place as R varies, fixing �9 are 
pictured in Fig. 3. 

We studied numerically the stability of the stationary solutions Po~, 
without computing explicitly the critical values of R for Pot. 

(i') f i x i ng0<  e < q  
Po~ arise stable and attractive at R = Rs(e) (Fig. 3A). As R increases, they 
undergo a direct Hopf bifurcation because a pair of complex conjugate 
eigenvalues 71,2 of the Liapunov matrix at Pot, Lot(R, e) crosses the imagi- 
nary axis at R = 00(e). The Pot's bifurcate then into four symmetrical 
periodic orbits, HOt, one around each Pat; the orbits have period II(H~ 

2~r/Im(,h.2), as predicted by the bifurcation theory ~' 71. 
(ii') f i x i n g q < e < e  3 

PaT arise unstable at R = Rs(�9 ), with a pair of conjugate eigenvalues ~'3,4 of 
the Liapunov matrix La. ~ placed in the right half-plane, and the other five 
7i, i--- 1,2,5,6,7 in the left one. As R increases, the pair ~"3,4 c r o s s e s  the 
imaginary axis from right to left at R = R2(e ), while another pair, "/1,2 
crosses the imaginary axis from left to right at R -- Oo(e). We saw numeri- 
cally that R2(r ) < p0(e) for e E ( e l ,  e2) , and that po(�9 < R2(e ) for e E (e 2, e3), 
where e 2 ~ 0.31540 is such that R2(e2) = 00(�9 We have then a subpartition 
of (�9 e3) in two intervals: 

Fixing q < e < e2 (Fig. 3B) 
Po~ arise unstable at R = Rs(e ), and become stable at R = R2(e); the now 
stable Pot's lose stability then, at R = p0(r bifurcating into the stable 
periodic orbits H~ 

Fixing e 2 < e < �9 (Fig. 3C) 
Pot arise unstable at R = R,(e), and then undergo a direct Hopf bifurcation 
generating four unstable orbits HoT. In this way the Pa~'s become "twice" 
unstable, i.e., with two pairs of complex conjugate eigenvalues for Lo. ~ in the 
right half-plane. As R increases beyond R2(e ) and the pair 73,4 crosses the 
imaginary axis from right to left, Pot may undergo another bifurcation, but 
we were not able to understand what kind. 

Any attempt to look for a stable periodic orbit bifurcated via Hopf at 
R = R2(e ), as R decreases, for �9 < e2, has been unsuccessful, so that we 
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would exclude that  this is a direct b i furcat ion (see Section 7 for the case 
e = 0.3). 

4. SEQUENCES OF PERIOD-DOUBLING BIFURCATIONS 

As ment ioned  in Section 2, unlike the seven-mode  model ,  in the 
f ive-mode one, i.e., at  c = 0, the onset of turbulence is due to the exhaust ion 
of two infinite sequences of bifurcations,  related to two infinite sequences 
of periodic orbits, {H i} and {A i}. 

We  will call 0i(e) the value of R, fixed e, at  which the periodic orbit  
H i -  l bifurcates  into the periodic orbit  H i, doubled  in per iod and  winding 
up twice a round  H i -  1 ; #i(e ) will denote  the value of R, fixed e, at which the 
orbit  A i -  1 loses stability bifurcat ing into the periodic orbit  A i, also doubled  
in per iod and winding up twice a round  A i - i .  Since the sequences {0i(0)} 
and  {~i(0)} are compat ib le  with Fe igenbaum's  conjecture  181, in Ref.  5 two 
values are estimated,  0~  and  / ~ ,  at which, respectively, the sequences 
{H i} and {A i) exhaust  themselves. 

Still in Ref.  5 a chaot ic  behav ior  is observed for  ~ < R < R~, tha t  is 
up to a value o f  R at  which a per iodic  orbi t  I" arises, which seems to exist 
stable and  at t ract ive for  any  larger value of R. We  found that  this R range 
of turbulence is actually b roken  by another  sequence of per iod-doubl ing 
bifurcations,  giving rise to a sequence of orbits { Ci}, which in turn is very 
likely to be infinite. 3 

I t  is ra ther  puzzling that  these p h e n o m e n a  do not  appea r  at all in the 
seven-mode  model ,  i.e., at  e = 1. The  thing can be explained first observing 
that  all of the critical values 0i(e), regarding the sequence {Hi} ,  go to 
infinity with e'I'e 3. In  fact  the first orbit  of the sequence, H ~ arises via a 
H o p f  bi furcat ion f rom the s ta t ionary solutions Po~, which in turn arise at 
Rs(e ), and  we saw in Section 3 that  Rs(e ) ~ + m as e'I'e 3. Moreover ,  looking 
at  Fig. 4, one can see that  turbulence is actually "swal lowed"  by  the 
pos t turbulence  periodic orbit  F, whose "bir th  value"  R~(e) is finite for 
every value of e. [We will see the fate of r (e )  in the next section.] 

Now,  considering the mat te r  in detail, let us sketch the major  features 
concerning the sequences {Hi(c)}, {A i(e)}, { Ci(e)} as e is increased f rom 
zero. 

Consider  first the sequence {Hi} .  I t  gets rapidly squashed against  H ~ 
In  fact, it is not  difficult to verify that, while for e = 0.15 the orbit  H 2 is 
easy to find, for e = 0.20 it is not  detectable  any  more  even if the orbit  H 1 
continues to bifurcate  through - 1. Fur thermore ,  one can easily check that  
O2(e) tends to pl(e) as e tends to e I. 

3 Each of the sequences (Hi}, {A i), (Ci}, has to be regarded as four symmetrical sequences 
{ H/, }, (A/~ }, { C~', }, undergoing identical behavior, as mentioned in Section 2. 
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Another feature about H ~ can be observed fixing e in the range (%, %), 
where e 2 = 0.3154. The Ho~ arise unstable from unstable Po, at R = p0(E) 
(see Fig. 3c). This fact seems quite interesting because it is an example of  a 
direct H o p f  bifurcation f rom unstable fixed points into unstable periodic 
orbits. As R increases, the/-~or'S gain stability at R = R3(e) and then they be- 
come again unstable at R = Q 1 (e) because of  an eigenvalue - 1. For R slightly 
greater than 01(e), any randomly chosen initial data in a neighborhood of 
H ~ is rapidly attracted by I ' .  We cannot exclude, though, that at 01(e) we 
have an inverse bifurcation to an unstable orbit of  double period. 

As far as the sequence {A i } is concerned, there is numerical evidence 
that their R range of existence tends to vanish as E increases from zero. We 
have verified that for e = 0.15 the stability R-range of  A ~ is about  0.0013, 
while the same range for e = 0 is about 0.015. 

Also the R range of stability of the sequence {C i } vanishes as e 
increases, but in a different way. 

For 0 ~< e ~< 0.32 the periodic orbit C O arises stable, together with an 
unstable C*, at R = v0(e). It  then becomes unstable at R = vl(e ), because a 
real eigenvalue of the Liapunov matrix of its Poincar6 map leaves the unit 
circle through - 1. The next orbit of the sequence, C 1, however, becomes 
indetectable for values of e greater than 0.15, as its range of stability gets 
smaller and smaller. 

The behavior of C o suddenly changes for e > 0.32. In fact its stability 
range quickly vanishes because a pair of complex conjugate eigenvalues 
crosses the unit circle. 

For e = 0.34 C o arises unstable, and remains unstable for every value 
of R at which it is detectable. 

To notice the fact that for e > 0.32, we have v0(e ) < Rs(e), which 
means that the orbit C o exists for values of (R, e) at which the stationary 
solutions Po, do not exist. Moreover, the unstable C o has been followed in e 
up to e = 0.347, i.e., a value of e at which the Po,'s do not exist for any R [in 
fact R,(r + oe as eI"% =~ 0 . 3 4 6 4 . . .  ]. Hence the four orbits C ~ are not 
strictly connected with the four stationary solutions Po,, as it may appear  at 
{[~0. 

5. A PERIODIC ORBIT COMMON TO THE TWO MODELS 

Two stable periodic orbits r +  and F_ ,  each one invariant under the 
symmetry (/3), and transformed into the other by (a) or (-f), are present for 
any value of c ~ [0, 1]. We will refer to both of them simply as F in the 
following, as they undergo identical behavior, owing to the symmetries of 
the system. 
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Table I 

0 14.9 + cc 
0.1 15.1 + oe 
0.3 16.7 + 
0.5 20.6 + oo 
0.7 33.5 105.5 
0.9 44.4 593.9 
1 63.3 197.5 

i i i 

In different ranges of e, however, F plays quite different roles. At e = 1 
(see Ref. 6), it is a "preturbulence" orbit, which becomes unstable at 
R = 197.5 bifurcating into a stable 2-torus T(F), which in turn becomes 
unstable. At e = 0 ,  on the other hand (see Refs. 4 and 5) F is a 
"postturbulence" orbit which is stable and attracting VR > 14.95. 4 

Introducing the notation R~(e), R . . . .  r re), respectively, for the least and 
the largest values of R, fixed e, at which F exists and is attracting, we 
numerically determined the scheme shown in Table I, displaying different 
strange features. While R~.(~) looks like a nicely increasing function, R{~'(e), 
far from showing any regularity, seems to overtake infinite value for some 
e. The explanation lies in the behavior of the eigenvalues of the Liapunov 
matrix of the Poincar6 map for F, which will be called M(R, ~). 

Let us first consider the function R~(e). 
For values of e < 0.3, R~(e) represents the least value of R for which F 

exists; in fact one can see numerically that a real eigenvalue of M tends to 
join the unit circle at + 1, as R decreases to R~(e); we have verified 
numerically that with decreasing R toward R{.(e) the stable periodic orbit F 
coalesces with an unstable orbit F* (as predicted by the general bifurcation 
theory(9)), and that for R < R~(e) the orbit is no longer present, so that 
R{.(e) is a "birth" value for F, let us call it R~(~). 

At other values for e, though, R~.(e) is no longer a "birth" value for the 
orbit F: 

At e = 0.5, for instance, R~(c) represents the least value of R for which 
F is stable; with decreasing R beyond R~(e), an eigenvalue of M actually 
crosses the unit circle at + 1, so that for R < R{-(e), F exists, but it is 
unstable. We did not investigate what kind of bifurcation takes place at 
R~(e) for this value of F; however, as R decreases from R~(~), we see 
numerically that another eigenvalue of M tends to join the unit circle at 

4The presence of a stable periodic orbit for high values of the parameter in a dissipative 
system of this kind is not surprising: for the Lorenz model, for instance, it has been 
rigorously shown by K. Robbins. (l~ 
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+1,  and the now unstable F coalesces at R = R~(0.5)~ 20.19 with a 
"twice" unstable I '* (i.e., with two real eigenvalues out of the unit circle); 
this latter is the value of R to be regarded as the birth point of F at e = 0.5. 

At e = 0.7 F still loses stability as R decreases beyond R{.(e) with a real 
eigenvalue actually crossing the unit circle at + 1. 

At c = 0.9 and e = 1. F becomes unstable with decreasing R, as a pair 
of complex conjugate eigenvalues of M crosses the unit circle for R 
= R ~ , ( e ) .  

We think that a birth value R~(c) for F still exists at these values of e, 
but as F rapidly becomes very unstable with decreasing R, it is difficult to 
follow it continuously and to determine R~.(e). 

To the unexpected nonmonotone trend of Rv'(e ), it is reasonable to say 
that R~'(c) is actually piecewise monotone, and the intervals of monotonic- 
ity can be determined again looking at the behavior of the eigenvalues 
41, �9 �9 �9 46 of M(R, e). More precisely, our numerical investigations suggest 
considering four e intervals: 

(a) 0 < c < e  4 
R~.'(e) is presumably infinite. For any R greater than R~(c) all the eigenval- 
ues of M are inside the unit circle, and F is stable and attractive. 

For e = e 4, which seems numerically to be about 0.5, a real eigen- 
value, 43 tends to + 1 as R tends to infinity. 

( b )  e 4 < ~ < e 5 
Here R~'(e) is a decreasing function. Now the eigenvalue 43 actually crosses 
the unit circle for some finite value of R, and F becomes unstable. 

For e = e 5, R~'(c) has a minimum as a second eigenvalue of M, say 41, 
goes out of the unit circle through + 1 at the same time of 43. We did not 
determine c 5. 

(C) E5 < s < s 
R~'(Q is an increasing function. I" becomes unstable at R = R~'(c) because 
4~ crosses the unit circle at + 1. Such a bifurcation, however, has not been 
investigated. We have instead found that 0.83 < c 6 < 0.85. In fact, for 
c = 0.83 F loses stability at R = R~'( .83)~ 1750.0 because of the real 
eigenvalue ~1 becoming greater than + 1, while for e = 0.85. F becomes 
unstable at R = R/. '(0.85)~ 2634.0 because of the pair of complex conju- 
gate eigenvalues (41,4e) crossing the unit circle. For 0.835 < e < 0.845, on 
the other hand, F is still stable at R = 3300., with period H(F) ~ 0.060, and 
since the period of F is a decreasing function of R and F is a very large 
orbit, it is not worth integrating it numerically for larger values of R. 

(d) E 6 < e < 1 
R~'(e) is a decreasing function, and fixing e in this range, F loses stability at 
R = Rfi'(E) with a pair of complex conjugate eigenvalues, 4i and 42 crossing 
the unit circle; as expected from the general bifurcation theory, (2) F 
bifurcates into a stable 2-torus T(F), as R increases beyond R~'(e). 
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Remark. For R slightly greater than R~.(e) all the eigenvalues of M 
are inside the unit circle. We have then a picture for these eigenvalues, 
which is quite similar to the one in Section 3 (Fig. 2), concerning eigenval- 
ues of the Liapunov matrix for the stationary solutions P~. Observing that 
the role played there by the imaginary axis is here played by the unit circle, 
we still have two complex conjugate eigenvalues ~], ~2 that become real as 
R increases. Depending on the value of e that has been fixed, the pair will 
become real outside the unit circle (d) or inside the unit circle (a, b, c). In 
this latter case one of the two now real eigenvalues, ~t, increases in a finite 
range: if this range contains + 1 we have (c). Otherwise, we have (b) when 
the range of another eigenvalue, ~(R),  contains + 1, and (a) when it does 
not contain + 1 either. 

6. PERIODIC SOLUTIONS FROM THE SEVEN-MODE MODEL 

In Ref. 6 the model is studied at e = 1; in this case a stochastic 
behavior is observed at large values of R, when no simple attractor is 
present. Two symmetric stable periodic orbits Oo, bifurcated from the 
stationary solutions Po via a Hopf bifurcation at R = Rh(1 ), and two other 
symmetric orbits I'~, lose stability bifurcating into two 2-tori T(| T(F~), 
respectively, as R increases beyond certain critical values. We have already 
seen in Section 5 that I' is the postturbulence orbit of the five-mode model. 
Studying the two functions R~(e) and R~'(E) and their different meanings to 
the bifurcations of F, we also saw how its role changes as ~ increases from 
zero to one. 

For what concerns the orbits O0, present in the interval (~l, 1], we have 
not performed an analogous study as E varies, limiting ourselves to investi- 
gating their behavior at r = 0.3. Referring to the next section for the results 
of such study, let us remark here something about their period, II(Oo). 
Using Hopf's theorem to predict the period of the orbits 6)0, we have that 
II(O) = 2~r/Xo, ~'0 being the imaginary part of the eigenvalues of L,(R,r 
crossing the imaginary axis as a pair of complex conjugate numbers. Since 
X 0--> 0 as r162 (see Section 3 and Fig. 2), the period of E) tends to infinity as 
E decreases to el- 

Still in Ref. 6, four other stable periodic orbits are studied, X1,2 and 
~bl.z, that do not seem to bifurcate into any other attractor as they lose sta- 
bility with increasing R (see Section 2); we have verified that these orbits 
tend to become unstable for every R as e decreases from e = I. More precise- 
ly xl and X2 are two symmetric periodic orbits, each one invariant under 
symmetry (-y) and transformed in the other by (o0 or (~); as they undergo 
identical behavior, owing to the symmetry of the system, they will be 
referred to as X in the following, tpl and ~2 are invariant under (c 0 and each 
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one is transformed into the other by (f l )  or (y), so that they will be referred 
P to as ~b in the following. Keeping, as in Section 5, the notation Rx(e ) and 

R~(e), respectively, for the least value of R, fixed e, for which X and ~b are 
t/ R t! , "  "~ stable, and R x (e), , re) for the largest values of R for which, respectively, 

r 
X and ~ exist and are attractors, we have from Ref. 6, that Rx(1 ) ~ 141.7 

t! and R •  248.2, while R~(1)~  146.61 and R~'(1)=~ 166.59. It has been 
verified numerically that the range of  stability [ R " ( e ) -  R'(e)] rapidly de- 
creases with e in both cases. As far as X is concerned, there is numerical 
evidence that 

[ R X ( e ) -  R;(e)]  ,0  
E ~ E  7 

where s ~ 0.85. A similar trend is observed for ~, but we did not determine 
a value for ( at which the R range of stability for + vanishes, because the 
strong dependence of + on e made it both difficult and expensive to follow 

continuously as E decreases from e = 1. 

7. AN I N T E R M E D I A T E  MODEL:  e = 0.3 

As mentioned in Section 3, if we consider the system (3.1) regarded at 
fixed e E (q,e3) as a one-parameter family of differential equations (the 
parameter being R), we have a superposition of the phenomenologies of the 
five-mode model and of the seven-mode one. Moreover, for these values of 
e, no chaotic behavior is observed at any value of R. We think then it is 
worth describing rather in detail the asymptotic behavior of solutions of the 
system at e = 0.3, summarized graphically in Fig. 5. The dependence on c 
of the critical values Ri(E ) will not thus be stressed any more in the present 
section. 

As expected by rigorous computations and verified numerically (see 
Section 3, and Fig. 3B), we have the following: 

(i) 0 < R < R  1~2 .74  
One stationary solution, P0 is present, stable, and by numerical evidence 
globally attractive. 

(ii) R ~ < R < R  h ~ 8 . 7 9  
Two more stationary solutions Po are present, bifurcated at R = R l from 
P0, therefore now unstable; the Po's are symmetric, stable and attractive. 
(~ = _+ ; for coordinates see Section 3.) 

(iii) R h< R< R~12.32 
As R increases beyond R h, a pair of complex conjugate eigenvalues of the 
Liapunov matrix for Po crosses the imaginary axis, and two stable periodic 
solutions | arise via a direct Hopf bifurcation, each around one of the 
now unstable Po's. 

(iv) A t R = R ~  



384 Tedeschini-Lalli 

One of two positive eigenvalues of the Liapunov matrix for Po crosses the 
imaginary axis from right to left, and Po bifurcate into four unstable 
stationary solutions Po,, two from each Po. 

The other phenomena taking place as R varies have been studied 
numerically. 

The orbits | which will be now on referred to as | exhibit an 
interesting feature: either they exist and are attractors, or they do not exist 
at all. In fact O appears stable via a Hopf  bifurcation at R = Rh, with 
period I I ( O ) ~  12.05 ~ 2~r/lImX11, as predicted by the general bifurcation 
theory. Numerical  studies show that the eigenvalues of its Poincar6 map 
keep inside the unit circle for values of R up to R = 19.660, when a real 
eigenvalue joins the unit circle at + 1. We verified that at this value of the 
parameter, t9 coalesces with an unstable periodic orbit | which is present 
at the same time. The two critical values of R can thus be regarded, 
respectively, as points of "birth" and "death," R~ and R~, for | which 
therefore exists and is an attractor for 8.79 ---- R~ < R < R~ ~ 19.66. 

So far, the phenomenology connected with the two points Po. Consider 
now the four stationary solutions PoT, bifurcated unstable from unstable P~ 
a t R  = R s (Fig. 3B). They become stable at R = R2 ~- 16.85, when a pair of  
complex conjugate eigenvalues of  Lar crosses the imaginary axis f rom right 
to left. We can exclude that a direct H o p f  bifurcation takes place, since any 
numerical attempt to find a stable periodic orbit of the expected period 
around Po~ for R slightly smaller than R 2 gave no result. We can guess that 
an inverse Hopf  bifurcation takes place at R = R2, and an unstable 
periodic orbit is present around each PoT for R > R2, but we could not 
verify it. 

R 2 <  R < O0 ~27-37 
PoT are stable up to R = P0, when a direct Hopf  bifurcation takes place and 
four stable symmetric periodic orbits HoT appear, each around one PoT. 

At R = 0z =~ 33.19 H~ becomes unstable as a real eigenvalue of its 
Poincar6 map crosses the unit circle at - 1; unlike the case e = 0 (see Refs. 
4 and 5), H ~ does not seem to bifurcate into a stable orbit of doubled 
period. For R slightly greater than Pl, initial data near the now unstable H ~ 
are attracted by other attractors present at the same time. 

17.57 ~ R E < R < R~ ~ 17.68; In this range of R another periodic 
orbit is present, C, which appears at R = R c together with an unstable one, 
C* (i.e., as RSR~,  C coalesces with C*). At R = R~ a real eigenvalue of the 
Poincar6 map for C crosses the unit circle at - 1 ,  but no period-doubling 
bifurcation seems to take place. (C must actually be regarded as four orbits 
symmetrically placed.) 

The periodic orbit F arises at R = R?-~  16.73 together with unstable 
F*, and remains stable and attracting for every value of R that we have 
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investigated (up to R = 5000). As R increases the period II(F) decreases, 
and for large values of the parameter  any random initial point is rapidly 
attracted by I'. 

As mentioned in Section 4, the orbit A, which for �9 = 0 gives rise to an 
infinite series of period-doubling bifurcations, is no longer detectable at this 
value of e. 

At c -- 0.3, therefore, no chaotic behavior is observed. At every value 
of R the nonwandering set a ( R )  consists of a finite number  of stationary 
solutions and periodic orbits, at least one of which is stable and attracting, 
as it is possible to verify integrating system (3.1) with random initial data. 

8. C O N C L U S I O N S  

In this paper we have studied the transition from a 5-mode model of 
truncated Navier-Stokes equations, to a 7-mode one. The two models, the 
latter extending the former, exhibit two rather different phenomenologies, 
and this motivated our study. In fact, setting a weight e on the two added 
modes, x 6 and x 7, one can see what their relevance is to the whole 
phenomenology. 

The main results of the study are synthesized in Fig. 6, where it is 
possible to check how crucial the critical value e3 is, since the phenomenol- 
ogy connected with the four stationary solutions Po, goes to infinity as 
tends to e 3 (curves R s, R 2, O0). 

The other two infinite sequences of periodic orbits, {A s} and {ci}, 
present in the 5-mode model and connected with the onset of turbulence, 
disappear because their R-range of stability vanishes as e increases from 
zero. For this reason their critical curves are not pictured in Fig. 6, but it is 
worth saying that for e = 0.34 they are both already gone. 

Turbulence disappears in the same way as e increases from zero. It 
develops in a range of R which is finite in the 5-mode model (e = 0), shifts 
to higher R ' s  as e increases, and vanishes canceled by the periodic orbit F, 
whose birth function, R~(e) overtakes finite values for every e E [0, 1]. As e 
tends to 1, turbulence develops at high values of R, when no other simple 
attractor is present. 

The critical curves for the orbits X and ~ of the 7-mode model are not 
present in Fig. 6, because their behavior is analogous to {A s} and (CS}, 
that is, their R ranges of stability vanish as e decreases from one. For 
�9 = 0.8 they are both already gone. 

We did not investigate in more detail (except for the strange e = 0.3 
case) the behavior of system (3.1) at intermediate values of e, even though it 
might show interesting phenomena not present at �9 = 0 nor at e = 1. We 
preferred to understand thoroughly how the 5-mode phenomenology disap- 
pears and how the onset of the 7-mode one takes place. 
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